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The problem of the pull-out of a rigid fibre from an elastoplastic matrix is solved analytically. The stress-strain state in the matrix as 
a function of the current position of the fibre is obtained in the form of quadrature& © 2000 Elsevier Science Ltd. All fights reserved. 

The pull-out of a fibre from a matrix is one fo the main types of tests for determining certain properties 
of the interface between two materials (see, for example [1 ]). This process has been analysed theoretically 
using mainly the linear theory of elasticity [1-5]. The flow of an ideal rigid-plastic material along a rigid 
cylindrical fibre was considered in [6]. It follows from the solution, in particular, that the equivalent 
rate of plastic deformation tends to infinity at points of the matrix material on the fibre surface. 
Consequently, the accumulation of plastic deformation at these points also tends to infinity, which 
indicates that such a model of the material is inapplicable in this case (fracture should occur before 
the conditions have been established for which elastic deformations can be neglected) 

In this paper we consider the motion of an infinite absolutely rigid fibre in an infinite elastoplastic 
hardening matrix. This does not enable us to estimate the influence of end effects, but leads to a relatively 
simple solution, describing the features of the process at a fairly considerable distance from the fibre 
ends. To analyse the fracture we use a model based on the damage concept [7-10]. Hence, the yield 
point of the material depends on the accumulated plastic deformation and the damage parameter. It 
is assumed that the Mises plasticity condition and the associated flow rule hold. The moduli of elasticity 
are assumed to depend on the damage parameter. 

With these assttmptions the problem belongs to the class of antiplane-deformation problems. Some 
problems of this class have been considered in [11-14], mainly for an ideally plastic material. To solve 
elastoplastic problems the smoothness of the solution is essential. We will assume that the displace- 
ments, deformations and stresses are continuous at the elastoplastic boundary [11]. 

1. STATEMENT OF THE PROBLEM 

Consider an absolutely rigid infinite cylindrical fibre of radius r0, moving in an infinite elastoplastic 
medium with a velocity w0, directed along the fibre axis (in Fig. 1, (1) is the fibre, (2) is the plastic zone, 
(3) is the elastic zone and (4) is the elastoplastic boundary). The deformations are assumed to be small. 
The yield point of the medium at pure shear k is assumed to be a function of the accumulated plastic 
deformation, e~q and the damage parameter D, represented in the form [7]. 

k =/coil + f(e~)](l - D) (1.1) 

Here/Co is the yield point of the material in the undeformed state and f(e~q) is a fairly arbitrary 
differentiable function such that f(0) = 0 and df/de~ > O. 

We will seek a solution in a cylindrical system of coordinates r, q~, z with the z axis coinciding with 
the axis of symmetry of the fibre, assuming that the antiplane deformation conditions are satisfied. In 
this case the corrtponent of the deformation rate tensor ~ and the projection on the z axis of the 
displacement vector u and of the velocity vector w will be non-zero. Then, for an isotropic material the 
only non-zero component of the stress tensor will be xrz. In this case the plasticity condition takes the 
form I xrzl - k. Without loss of generality we can assume 

• = k (1.2) 
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Fig. 1. 

The equation of the evolution of the damage parameter [7, 9] when cr =0 (o is the average stress) 
has the form 

b = o ~  (1.3) 

The dot denotes a derivative with respect to time t, while tx is a constant characterizing the properties 
of the material. The fracture condition is given by the equation 

D = Dc = const (1.4) 

The relation between ~z and Xrz in the plastic region has the 

~,,z = ~'Xr~ + (G / 2)d[x,z/(I - D)] /dt. ~ >~ 0 (1.5) 

form and in the elastic region 

~,z = x,z/(2G) (1.6) 

In (1.5) the reduction in the shear modulus G due to damage accumulate was taken into account. Since 
we are considering small deformations, the shear deformation erz is related to ~z by the equation 

,~ = ~ ,~ (1.7) 

We will assume that there is no sliding between the fibre and the matrix. Then 

w = - w 0  at r = r o  (1.8) 

Here w is the projection of the velocity of points of the matrix material onto the z axis and w0 > 0. The 
sign in (1.8) is chosen so as to meet the condition ~z > 0, which follows from (1.2). 

2. THE ELASTIC STATE 

In view of the above assumptions, one equilibrium equation remains in the form OXr~/Or + "crz/r = O. 
The general solution of this equation has the form 

"c,z = Xor o I r (2.1) 
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(x0 is a function of time). At this stage of the process, instead of (1.6) we can use the finite relation 
between Xrz and er~ =-- Er, -- Xrz/(2G). Taking into account the strain definition e~, =(1/2)Ou/Or, from (2.1) 
we obtain Ou/Or = (Toro)/(Gr). Integration of this equation gives 

u = [( 'Coro)lG]ln(r l  r o ) -  Wot (2.2) 

The integration function iri (2.2) is chosen so that the displacements of the layer r = r 0 satisfy the 
condition which follows from (1.8). 

Suppose a circular layer r = R0 is fixed during the flow process. Then, from (2.2) we obtain 

"C o = Grotwo t I In(R 0 / ro) 

Hence, we obtain fi:om relation (2.1) 

%z = G r - t  wo t l In(Ro / r0) (2.3) 

The shear strain is given by the eqpation 

•,z = (I /2)r  m Wot I ln(R o /r0) (2.4) 

This solution ceases to hold when xrz attains a value of k0. It follows from (2.3) that the quantity Xrz 
is a maximum when r = r0, and the maximum displacement of the fibre in the completely elastic matrix 
will be 

Wot m = (k o / S ) r  o In(Ro / r o) (2.5) 

When the load in the matrix in the region of the fibre surface is increased, the fibre begins to form 
a plastic zone. Henceforth we mean by the deformations their increments with respect to the distribution 
defined by (2.4) at t = tin. 

3. THE S O L U T I O N  IN T H E  P L A S T I C  Z O N E  

It is obvious that for the radius of the elastoplastic boundary we have 

R = r o at t =  t,. 

Assume that 

(3.1) 

and we then obtain from (3.3) 

x = kc~/ro,  k = kolC/r 

For many materials D = 0 at e p = 0 [8]. Integration of Eq. (1.3) with this condition gives 

(3.4) 

(3.5) 

/~ > 0 (3.2) 

at any instant of time. The general solution of the equilibrium equation, as previously, has the form 
given by Eq. (2.1). Substituting expression (1.2) into (2.1) we obtain 

k = xr o / r (3.3) 

Here x is the new integration function. As a consequence of relation (3.2) we have the boundary condition 

k = ko at r = R 
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Then, it follows from (1.1), (3.4) and (3.5) that 

[l I '  + f(eeq)]( l  - (Xe~q) = R I  r (3.6) 

We will introduce the new independent variables 

p = R/r,  s = R / r  o (3.7) 
Hence 

2-7: +~0 as)' aS: Rap (3.8) 

From (3.6) and (3.7) we obtain 

eP = ~(P) (3.9) 

Here (~(p) is a known function for a given hardening law, since bePq = 2V-2-~(~.j~iJ) 1/2. Then, in the case 
considered and as a consequence of Eq. (1.7) 

e~" = ae~P / a t :  (2 / ~ ) ~ P  (3.10) 

Substituting (3.9) into (3.10) and taking relation (3.8) into account we obtain 

/¢R-'paC,/ ap: ~2/ 4~)~ (3.11) 

The elastic component of the shear strain rate ~r e (the second term in (1.5)) is determined taking into 
account relations (3.4), (3.5), (3.7)-(3.9) and (3.11). Then, we have for the total deformation rate 

¢'~ : ¢~ + ¢~ = ~ 6 [1  - o~,~Cp)] ~ 
(3.12) 

Eq. (1.5) determines ~,, since Xrz and ~z have been obtained. Substituting the expression ~ = (1/2)aw/ar 
into (3.12) and taking relaitons (3.8) into account we obtain 

a_._~Wap = - ;  G[I - (x(1)(p)] 2 (3.13) 

It follows from (3.7) that on the fibre surface P = R/ro = s/> 1. Hence, condition (1.8) can be transform- 
ed to the form w = -w0 where r = s. Integrating (3.13) and taking this condition into account we obtain 

W =  ' - - '  " l "  

Rk° i zIl-(x(D(z)] 1-a(l)(s) l-(~*(p) G p 

1 $ 

+ ¢ RS - ,(z)dz-Wo : R,0<p,,)-w0 
k s P J p 

(3.14) 

Since w = au/at,  we obtain from relations (3.8) and (3.14) 

au au sw o 
p ~  + ~ ~ = ros*o(P, ~)- - -U 

¢o(P,S)= k----° In P +-~f3(I)(p)l-,[3(l)(s)l--cr3 i ~z...__~) d 
O s p s p Z2 Z 

(3.15) 
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The quantity Wo/~ is to be determined as a function of s from the conditions on the elastoplastic 
boundary and the solution in the elastic zone. After this, Eq. (3.15) can be solved to determine the 
displacement u. 

4. T H E  S O L U T I O N  IN T H E  E L A S T I C  Z O N E  

It is obvious that the general solution, presented in Section 2, remains true in the elastic zone. 
However, the integration functions must be determined from other conditions. In the variables (3.7), 
Eq. (2.1) has the form Xr~ = XoOS -1. On the elastoplastic boundary p = 1 and ~rz = k0, and hence 

x 0 = k0s, x,~ =/cop (4.1) 

Since, in the elastic zone p < 1, it follows from the second relation of (4.1) that the plasticity condition 
in this zone is not reached. We obtain from Hooke 's  law 

Ou / Or = k0P / G (4.2) 

Passing in this equation to differentiation with respect to p using relation (3.8) and integrating, we 
obtain 

(u I ro) = - ( k  o I G)s In p + Uo(S) (4.3) 

The velocity w is hence obtained by differentiation 

(w I r o) = [du o I ds - (k o I G)(In p + 1)]~ (4.4) 

From the condition u = 0 at r = R0 and expression (4.3) we obtain the function Uo(S), then we obtain 

u = roNs, w = roN~ (N = (ko l G)ln[rosl( Rop)]) (4.5) 

5. M A T C H I N G  OF T H E  S O L U T I O N S  IN 
T H E  E L A S T I C  A N D  P L A S T I C  Z O N E S  

The conditions in the stresses are satisfied by solution (4.1). The condition of velocity continuity when 
using relations (3.7) and (3.15) and the last expression of (4.5) when p = 1, reduces to the equation 

roM~ = w o, M = ~Po(I, s ) - ( k  o IG) ln[ros lR  o] (5.1) 

which defines the dependence s(t). Using relations (3.7) and (5.1), Eqs (3.14) and (3.16) and the last 
expression of (4.5) can be transformed to the form 

wP ~o(P,s) w" N 
_ _ _  m : _  ( 5 . 2 )  

w o M w 0 M 

Ou t" 3u e 
P-7--op + s -~-s  = r°s[¢° (P' s) - M] (5.3) 

Here  and henceforth the superscriptp denotes that the quantity belongs to the plastic zone, while the 
superscript e denotes that the quantity belongs to the elastic zone. It can be seen from (5.2) and (5.3) 
that, as follows from the general theory, the solution is independent of the timescale. 

The characteristics of Eq. (5.3) are straight lines in ps space. 

p = [3s (5.4) 

Here I~ is a constant quantity on each characteristic. It follows from the first equation of (4.5) and the 
continuity of the displacements that, on the elastoplastic boundary 
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u p = u e = ro(k o IG)s ln(ros l  Ro) (5.5) 

It follows from the structure of characteristics (5.4) that to calculate u p from Eq. (5.3) we have a 
Cauchy problem with condition (5.5) at p = 1. 

Note that there is also a displacement continuity condition on the "fibre-matrix" interface, where 
p = R/ro. However, as can be seen from (3.7) and (5.4), this line is a characteristic for [3 = 1. Hence, 
the Cauchy conditions cannot be specified on it. The displacement continuity condition on this line must 
be ensured by the velocity continuity condition, which has already been satisfied. In fact, it follows from 
(3.14) that ¢0(9, s) = 0 at p = s, i.e. at [3 = 1. In this case, u 0') is found from the characteristic relation 

ds = - d u  p I(roM) 

Dividing both sides of this equation by dt, we obtain, using (5.1), that duP/dt = - w  o. This equation 
holds for points of the fibre. Consequently, if at the initial instant there is no relative displacement of 
the points of the matrix over the fibre surface, the adhesion condition will be satisfied during the whole 
process. 

The continuity of the deformations on the elastoplastic boundary is ensured by the fact that 
= ('~/3/2)e~q = 0 at p = 1, as follows from (3.6), while the elastic deformations are equal on both 

sides of the elastoplastic boundary, in view of the equality of the stresses at its points. 

6. ANALYSIS OF T H E  R E S U L T S  

The solution of Eq. (5.3) with conditions (5.5) can be written in quadratures, but there is no need 
to solve this equation to analyse the fracture. However, it is necessary to show that a solution of the 
problem exists for the stresses and deformations obtained, which is also proved by the existence of a 
solution of Eq. (5.3). Taking (3.5) into account, the fracture condition (1.4) can be represented in the 
form cte~Pq = De, or, taking (3.9) into account, 

qb(p) = D,./a (6.1) 

By definition ~q ~> 0. Then, it follows from (3.8) and (3.9) that 

[¢pR-t d¢ I dp >t 0 (6.2) 

Taking assumption (3.2) into account, we have dCMp 0. Hence, the maximum value of ¢ is attained 
for the maximum possible value of 9. It follows from (3.7) that pff) = s if) (the fibre surface). Then 
condition (6.1), taking relations (3.6) and (3.9) into account, can be written in the form 

s tI) = [1 + f ( D  c / ot)](I - Dc) (6.3) 

Hence, the value of s(f)  for which fracture begins is determined. 
We will show that condition (3.2) will be satisfied. It must obviously be satisfied at the beginning of 

the process otherwise a plastic zone cannot be formed. We will assume that/~ = 0 for a certain value 
ofs.  Then ~.~ -- 0, and from the second equation of (4.6) using (3.7) we obtain w (e) -- 0. From the last 
condition we find that w (0 = 0 at 9 = 1. Differentiating (3.6), we obtain 

d___C= l 
dp P P P (d f  I decq )(I - Cteeq ) - [I + f(eeq )]ix (6.4) 

p Since the accumulated plastic deformation eeq is distributed non-uniformly, the derivative d¢/dp is 
bounded possibly, with the exception of one point). In this case from (3.11) we obtain ~rPz = 0. 
Consequently ~rPz = ~r~z +~rPz = 0 and hence the two conditions w = 0 and w = -w0 cannot be satisfied 
simultaneously at p = R/ro > 1. 

Nevertheless, it follows from (6.4) that the derivative d¢/dp necessarily changes sign at a certain value 
of eP~ (if, of course, fracture has not occurred earlier in accordance with condition (6.2)). In fact, the 
process of plastic deformation can start if d¢/dp > 0. Consequently, d¢/dp > 0 when ~ = 0. On the 
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other hand, it is clear from relation (6.4) that dC~/clp > 0 when e p = ~-1. Suppose the condition 
dC~/dp > 0 is satisfied when ~ = ~. at a certain instant of time. It follows from (3.9) that this corresponds 
to a certain critical value of ePq. Up to this instant the condition dCpMp > 0 is satisfied. Hence, the 
maximum value of ¢ and, consequently, ePq is reached at the fibre surface. This means that the condition 
d¢/clp > 0 can only be satisfied on the surface of the matrix. In fact, the assumption that the condition 
dC~/dp > 0 is satisfied at a certain point 1 ~< p < R/ro leads to a contradiction, since then, at a certain 
earlier instant of time, the condition ~ = ~. would have been satisfied at p = R/ro. 

If the condition d~}/dp = 0 is attained, a solution of the problem in question does not exist. Sometimes 
this is also treated as the onset of fracture [15]. As was shown above, from this point of view fracture, 
as in the case when condition (6.2) is satisfied, starts at the interface of the two materials. 

Despite the fact that the fracture condition has been written in the finite form (6.2), the connection 
between the instant of fracture and the actual position of the fibre requires numerical integration of 
Eq. (5.1), which determines the displacement of the fibre corresponding to s (y). This displacement must 
be added to the displacement Wotm defined by relation (2.5), for finding the complete displacement of 
the fibre up to the instant of fracture. Note also that solution (5.1) requires preliminary numerical 
integration in Eq. (3.15) to determine ¢0(P, s), in particular 00(1, s). The result of this successive 
integration enables one, using the final formulae (3.4), (4.1), (5.2) and (5.4), to establish the stress-strain 
state in the matrix (with the exception of u (p)) for any position of the fibre. In this case, the quantity 
e~z from (2.4) must be added to the shear deformation. 
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